MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical properties of pseudo-effective divisors

Author(s)
Lehmann, Brian (Brian Todd)
Thumbnail
DownloadFull printable version (4.379Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
James McKernan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Suppose that X is a smooth variety and L is an effective divisor. One of the main goals of bi rational geometry is to understand the asymptotic behavior of the linear series... as m increases. The two most important features of the asymptotic behavior - the litaka dimension and the litaka fibration - are subtle and difficult to work with. In this thesis we will construct approximations to these objects that depend only on the numerical class of L. The main interest in such results arises from the Abundance Conjecture which predicts that the Iitaka fibration for Kx is determined by its numerical properties. In the second chapter we study a numerical approximation to the Iitaka dimension of L. For a nef divisor L, this quantity is a classical invariant known as the numerical dimension. There have been several proposed extensions of the numerical dimension to pseudo-effective divisors in [Nak04] and [BDPP04]. We show that these proposed definitions coincide and agree with many other natural notions. Just as in the nef case, the numerical dimension v(L) of a pseudo-effective divisor L should measure the maximum dimension of a subvariety ... such that the "positive restriction" of L is big along W. In the third chapter, we analyze how the properties of the Iitaka fibration OL for L are related to the numerical properties of L. Although the numerical dimension detects the existence of "virtual sections", it does not have a direct relationship with the Iitaka fibration. However, we do construct a rational map that only depends on the numerical class of L and approximates the Jitaka fibration. This rational map is the maximal possible fibration for which a general fiber F satisfies v(LIF) = 0. Thus, this chapter recovers and extends the work of [Eck05] from an algebraic viewpoint. Finally, we use the pseudo-effective reduction map to study the Abundance Conjecture.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 69-71).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60194
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.