Show simple item record

dc.contributor.advisorTomasz S. Mrowka.en_US
dc.contributor.authorLopes, William Manuelen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mathematics.en_US
dc.date.accessioned2010-12-06T17:36:45Z
dc.date.available2010-12-06T17:36:45Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60197
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 63).en_US
dc.description.abstractIn this thesis I study the Seiberg-Witten equations on the product of a genus g surface [Sigma] and a circle. I exploit S1 invariance to reduce to the vortex equations on [Sigma] and thus completely describe the Seiberg-Witten monopoles. In the case where the monopoles are not Morse-Bott regular, I explicitly perturb the equations to obtain such a situation and thus find a candidate for the chain complex that calculates the Seiberg-Witten Floer homology groups.en_US
dc.description.statementofresponsibilityby William Manuel Lopes.en_US
dc.format.extent63 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMathematics.en_US
dc.titleThe Seiberg-Witten equations on a surface times a circleen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.oclc681956093en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record