MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Root polytopes, triangulations, and subdivision algebras

Author(s)
Mészáros, Karola
Thumbnail
DownloadFull printable version (4.862Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mathematics.
Advisor
Richard P. Stanley.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis a geometric way to understand the relations of certain noncommutative quadratic algebras defined by Anatol N. Kirillov is developed. These algebras are closely related to the Fomin-Kirillov algebra, which was introduced in the hopes of unraveling the main outstanding problem of modern Schubert calculus, that of finding a combinatorial interpretation for the structure constants of Schubert polynomials. Using a geometric understanding of the relations of Kirillov's algebras in terms of subdivisions of root polytopes, several conjectures of Kirillov about the reduced forms of monomials in the algebras are proved and generalized. Other than a way of understanding Kirillov's algebras, this polytope approach also yields new results about root polytopes, such as explicit triangulations and formulas for their volumes and Ehrhart polynomials. Using the polytope technique an explicit combinatorial description of the reduced forms of monomials is also given. Inspired by Kirillov's algebras, the relations of which can be interpreted as subdivisions of root polytopes, commutative subdivision algebras are defined, whose relations encode a variety of possible subdivisions, and which provide a systematic way of obtaining subdivisions and triangulations.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 99-100).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60199
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Massachusetts Institute of Technology
Keywords
Mathematics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.