MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the Verification of Hypothesized Matches in Model-Based Recognition

Author(s)
Grimson, W. Eric L.; Huttenlocher, Daniel P.
Thumbnail
DownloadAIM-1110.ps (2.869Mb)
Additional downloads
AIM-1110.pdf (1.144Mb)
Metadata
Show full item record
Abstract
In model-based recognition, ad hoc techniques are used to decide if a match of data to model is correct. Generally an empirically determined threshold is placed on the fraction of model features that must be matched. We rigorously derive conditions under which to accept a match, relating the probability of a random match to the fraction of model features accounted for, as a function of the number of model features, number of image features and the sensor noise. We analyze some existing recognition systems and show that our method yields results comparable with experimental data.
Date issued
1989-05-01
URI
http://hdl.handle.net/1721.1/6028
Other identifiers
AIM-1110
Series/Report no.
AIM-1110
Keywords
object recognition, search, model-based vision

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.