MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Task-Level Robot Learning: Ball Throwing

Author(s)
Aboaf, Eric W.; Atkeson, Christopher G.; Reinkensmeyer, David J.
Thumbnail
DownloadAIM-1006.ps (2.365Mb)
Additional downloads
AIM-1006.pdf (956.0Kb)
Metadata
Show full item record
Abstract
We are investigating how to program robots so that they learn tasks from practice. One method, task-level learning, provides advantages over simply perfecting models of the robot's lower level systems. Task-level learning can compensate for the structural modeling errors of the robot's lower level control systems and can speed up the learning process by reducing the degrees of freedom of the models to be learned. We demonstrate two general learning procedures---fixed-model learning and refined-model learning---on a ball-throwing robot system.
Date issued
1987-12-01
URI
http://hdl.handle.net/1721.1/6055
Other identifiers
AIM-1006
Series/Report no.
AIM-1006
Keywords
robotics, learning, tasks

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.