MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Foundations for an offshore wind turbine

Author(s)
Kopp, Duncan Rath
Thumbnail
DownloadFull printable version (19.63Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Andrew J. Whittle.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Worldwide energy demand is growing rapidly, and there is great interest in reducing the current reliance on fossil fuels for uses such as power generation, transportation, and manufacturing. Renewable energy sources, such as solar and wind, are abundant but have very low power densities. The US is in the process of approving its first offshore wind farm, located in Nantucket Sound. Geotechnical factors will play a large role in the development of offshore wind projects due to the high cost contribution from foundations, and the high loads associated with storm conditions. Offshore wind turbine foundations provide unique design challenges. First, various foundation alternatives exist, so it is important that an appropriate cost-effective foundation type be selected. Second, the loads and soil conditions will vary for each location. Therefore, it is important to ensure the foundation can adequately support vertical and horizontal loads. Finally, each turbine manufacturer has unique deflection and rotation criteria. Therefore, the foundation should perform within those tolerances, even under worst-case loading. This thesis considers the performance of a monopile foundation under typical vertical and horizontal storm loading conditions. Capacity, deflection, and rotation of a proposed monopile foundation are calculated by various methods to simulate the design procedure. The results show that very stiff foundations are required to keep pile head movements within design tolerances.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 75-76).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60766
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.