MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Thermal properties of structural details in wood frame homes : analysis and recommendations

Author(s)
Graybeal, Alexander Kung
Thumbnail
DownloadFull printable version (10.45Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Jerome J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The wood platform frame home is the dominant design in the United States when it comes to single family housing. Introduced during the mid-nineteenth century, the scheme is a cheap, fast, and proven design that takes advantage of the large and abundant American wood supply. However, while building technology in other sectors has advanced, we continue today to build single family homes in essentially the same manner that was done 150 years ago. This study centers around the analysis of the thermal properties of structural details in light wood frame homes, focusing on wall construction details for both retrofit and new construction. A two dimensional analysis software, THERM 5.2, is used to perform finite element heat transfer analysis on various wall lay up configurations. Based upon the analysis, two recommendations are made. The first is that when retrofitting, the standard methodology can be improved by additionally insulating exterior wall cavities formed by additional studs used in older partition details. The second is that the effectiveness of Advanced Framing Techniques should make it the primary method of new construction.The wood platform frame home is the dominant design in the United States when it comes to single family housing. Introduced during the mid-nineteenth century, the scheme is a cheap, fast, and proven design that takes advantage of the large and abundant American wood supply. However, while building technology in other sectors has advanced, we continue today to build single family homes in essentially the same manner that was done 150 years ago. This study centers around the analysis of the thermal properties of structural details in light wood frame homes, focusing on wall construction details for both retrofit and new construction. A two dimensional analysis software, THERM 5.2, is used to perform finite element heat transfer analysis on various wall lay up configurations. Based upon the analysis, two recommendations are made. The first is that when retrofitting, the standard methodology can be improved by additionally insulating exterior wall cavities formed by additional studs used in older partition details. The second is that the effectiveness of Advanced Framing Techniques should make it the primary method of new construction.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 50-52).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60772
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.