MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seismic load-resisting capacity of plastered straw bale walls

Author(s)
Hsiaw, Jennifer S. (Jennifer Sing-Yee)
Thumbnail
DownloadFull printable version (6.172Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Jerome J. Connor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Straw bales have been incorporated into buildings for centuries, but only recently have they been explored in academic settings for their structural potential. Straw bale building is encountering a growing audience due to its social and economic benefits. Plastered and reinforced straw bale wall assemblies have been found comparable to wood frame construction in resisting vertical and lateral loads. A number of straw bale residences have been constructed in the highly seismic state of California, while recent efforts have expanded its presence to quake-prone areas in developing countries like Pakistan and China. As this is a burgeoning arena of research, only empirical tests have been conducted. This thesis introduces a computer simulation of a wall assembly under lateral loading, using two techniques: a multi-layer shell element and an equivalent compression strut frame in SAP2000. The models assume homogeneity, and based on the results, areas for improvement and further research are suggested.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 57-58).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60773
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.