Show simple item record

dc.contributor.advisorHari Balakrishnan.en_US
dc.contributor.authorVutukuru, Mythilien_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-01-26T14:29:18Z
dc.date.available2011-01-26T14:29:18Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/60816
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 129-134).en_US
dc.description.abstractWith wireless devices becoming ubiquitous, the problem of designing high performance and reliable wireless networks is of great importance today. Wireless links are characterized by a rapidly varying channel, requiring transmitters to dynamically adapt their transmit bit rate. The broadcast nature of radio also necessitates the use of medium access protocols to arbitrate access among competing transmitters and reduce losses due to interference, while enabling successful concurrent transmissions. We observe that the problems with existing bit rate adaptation and medium access protocols stem from insufficient information about the wireless channel at the link layer. This dissertation makes two contributions: (i) a redesign of the interface between the physical and link layers in wireless networks to expose more information about the wireless channel to the link layer, and (ii) the design and evaluation of new link-layer protocols that improve throughput by using information about the channel delivered via the new interface. In today's network architecture, the physical layer (PHY) delivers received frames and per-frame signal strength measurements to the link layer. This dissertation proposes two enhancements to this interface: the PHY streams bits to the link layer as soon as they are decoded and before the entire frame reception completes, and it computes and exports SoftPHY hints with each decoded bit. The SoftPHY hint of a bit indicates the PHY's confidence that the decoded bit is correct. We show that the SoftPHY hints of a received frame can be used to estimate the bit error rate (BER) of the wireless channel faster and with more accuracy than with existing methods. We develop the SoftRate bit rate adaptation protocol that uses this BER computed from SoftPHY hints to pick transmit bit rates and improves throughput by 2 x over existing protocols. The streaming PHY interface enables the link layer to learn about the current transmission on the air by decoding headers before frame reception completes. The SoftCMAP and CMAP protocols make smart medium access decisions using this knowledge of ongoing transmissions along with a distributed map of conflicting transmissions, and improve aggregate network throughput by up to 50% by increasing the number of successful concurrent transmissions.en_US
dc.description.statementofresponsibilityby Mythili Ranganath Vutukuru.en_US
dc.format.extent134 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titlePhysical layer-aware wireless link layer protocolsen_US
dc.title.alternativePHY-aware wireless link layer protocolsen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc696795985en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record