MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributed Newton-type algorithms for network resource allocation

Author(s)
Wei, Ermin
Thumbnail
DownloadFull printable version (5.409Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Asuman Ozdaglar.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Most of today's communication networks are large-scale and comprise of agents with local information and heterogeneous preferences, making centralized control and coordination impractical. This motivated much interest in developing and studying distributed algorithms for network resource allocation problems, such as Internet routing, data collection and processing in sensor networks, and cross-layer communication network design. Existing works on network resource allocation problems rely on using dual decomposition and first-order (gradient or subgradient) methods, which involve simple computations and can be implemented in a distributed manner, yet suffer from slow rate of convergence. Second-order methods are faster, but their direct implementation requires computation intensive matrix inversion operations, which couple information across the network, hence cannot be implemented in a decentralized way. This thesis develops and analyzes Newton-type (second-order) distributed methods for network resource allocation problems. In particular, we focus on two general formulations: Network Utility Maximization (NUM), and network flow cost minimization problems. For NUM problems, we develop a distributed Newton-type fast converging algorithm using the properties of self-concordant utility functions. Our algorithm utilizes novel matrix splitting techniques, which enable both primal and dual Newton steps to be computed using iterative schemes in a decentralized manner with limited information exchange. Moreover, the step-size used in our method can be obtained via an iterative consensus-based averaging scheme. We show that even when the Newton direction and the step-size in our method are computed within some error (due to finite truncation of the iterative schemes), the resulting objective function value still converges superlinearly to an explicitly characterized error neighborhood. Simulation results demonstrate significant convergence rate improvement of our algorithm relative to the existing subgradient methods based on dual decomposition. The second part of the thesis presents a distributed approach based on a Newtontype method for solving network flow cost minimization problems. The key component of our method is to represent the dual Newton direction as the limit of an iterative procedure involving the graph Laplacian, which can be implemented based only on local information. Using standard Lipschitz conditions, we provide analysis for the convergence properties of our algorithm and show that the method converges superlinearly to an explicitly characterized error neighborhood, even when the iterative schemes used for computing the Newton direction and the stepsize are truncated. We also present some simulation results to illustrate the significant performance gains of this method over the subgradient methods currently used.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 99-101).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/60822
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.