Show simple item record

dc.contributor.advisorRoman W. Jackiw.en_US
dc.contributor.authorBrainerd, Andrew Ericen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Physics.en_US
dc.date.accessioned2011-02-23T14:29:00Z
dc.date.available2011-02-23T14:29:00Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61203
dc.descriptionThesis (S.B.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 43).en_US
dc.description.abstractThe Dirac equation is the relativistic generalization of the Schrödinger equation for spin 1/2 particles. It is written in the form -ihc -ihac OXIa+t' Omc 29 = ih-o (1.1) where V) is a four component Dirac spinor and the coefficients a and # are 4 x 4 matrices. Like the Schrödinger equation, the Dirac equation can be written as a time-independent eigenvalue equation H# = E* for a Hamiltonian operator H and energy eigenvalue E through separation of variables. The energy eigenvalues obtained by solving this equation must be real- one of the axioms of quantum mechanics is that physical observables, in this case energy, correspond to self-adjoint operators, in this case the Hamiltonian operator HI, acting on the Hilbert space 7H which describes the system in question. It can easily be shown that self-adjoint operators must have real eigenvalues. The reality of the energy eigenvalues becomes important when examining hydrogenic atoms using the Dirac equation. These atoms can be described by a Coulomb potential, V(r) = -Ze 2 /r, where Z is the number of protons in the nucleus and e is the elementary charge. When the nonrelativistic Schrodinger equation is solved for a Coulomb potential, the energy levels are given by the familiar Rydberg formula Z 2a 2mc2 1 En 2 2 (1.2) where Z is the number of protons in the atomic nucleus, a is the fine structure constant, m is the electron mass, c is the speed of light, and n a positive integer. Note that this formula assumes a stationary positive charge of infinite mass at the center of the atom, and that the energy levels for a more realistic model of an atom with a nucleus of finite mass M are given by replacing m with the reduced mass = mM/(m + M) in Eq. (1.2). When the Dirac equation in a Coulomb potential is used instead of the nonrelativistic Schrödinger equation, the energy levels are instead given by - 1/2 En, = mc2 1+ a2 (1.3) n' - j j + )2_ - 2Z2 where n' is a positive integer and j is the total angular momentum of the electron. The total angular momentum j can take on values in the range 1/2, 3/2, ..., n' - 1/2. The eigenvalues in Eq. (1.3) match those in Eq. (1.2) in the limit VZ < 1, noting that in Eq. (1.2), a free electron is considered to have an energy of 0, while in Eq. (1.3), a free electron has energy mc2 . A problem arises with Eq. (1.3) when aZ > j--. The quantity (j + 2- aZ 2 is imaginary, causing Eq. (1.3) to yield complex energy eigenvalues. Since the eigenvalues of a self-adjoint operator must all be real, this indicates that the Hamiltonian cannot be self-adjoint when aZ > j + 1. This issue raises two questions. The first is whether there is a physical explanation for the failure of Eq. (1.2) for large Z. The second is whether this problem can be addressed mathematically by defining a new, self-adjoint operator H., which is constructed from the old Hamiltonian H as a self-adjoint extension. In this thesis, I will answer both of these questions in the affirmative, relying and building upon work done by others on these questions. I will show how the failure of Eq. (1.2) can be motivated by physical considerations, and I will examine a family of self-adjoint extensions to the Dirac Coulomb Hamiltonian constructed using von Neumann's method of deficiency indices.en_US
dc.description.statementofresponsibilityby Andrew Eric Brainerd.en_US
dc.format.extent43 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectPhysics.en_US
dc.titleSelf-adjoint extensions to the Dirac Coulomb Hamiltonianen_US
dc.typeThesisen_US
dc.description.degreeS.B.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.oclc701106459en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record