MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

High intensity femtosecond enhancement cavities

Author(s)
Abram, Gilberto
Thumbnail
DownloadFull printable version (7.949Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Franz X. Kärtner.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
To produce extreme ultraviolet radiation via high harmonic generation (HHG) in rare gases, light intensities in excess of 1014 W/cm 2 are required. Usually such high intensity are obtained by parametric amplification of laser pulses, which in turn reduces the pulse repetition rate to a few kHz. Given that the HHG process is inherently inefficient, with conversion ratios less than 10-5, only a small fraction of the pulse energy is lost in the nonlinear interactions, so it is possible to enhance the pulse intensity in a passive cavity retaining the original repetition rate. I present here a novel broadband resonator design which has the potential of supporting intracavity intensities in excess of 1015 W/cm 2 while allowing the harmonic radiation to couple out of the cavity with no loss. Extensive computer simulations are performed with a custom software package, and the required mirrors have been constructed using a standard microfabrication process.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 93-94).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/61273
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.