Incorporating pitch features for tone modeling in automatic recognition of Mandarin Chinese
Author(s)
Chu, Karen Lingyun
DownloadFull printable version (3.136Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Wade Shen and Robert C. Berwick.
Terms of use
Metadata
Show full item recordAbstract
Tone plays a fundamental role in Mandarin Chinese, as it plays a lexical role in determining the meanings of words in spoken Mandarin. For example, these two sentences ... (I like horses) and ... (I like to scold) differ only in the tone carried by the last syllable. Thus, the inclusion of tone-related information through analysis of pitch data should improve the performance of automatic speech recognition (ASR) systems on Mandarin Chinese. The focus of this thesis is to improve the performance of a non-tonal automatic speech recognition (ASR) system on a Mandarin Chinese corpus by implementing modifications to the system code to incorporate pitch features. We compile and format a Mandarin Chinese broadcast new corpus for use with the ASR system, and implement a pitch feature extraction algorithm. Additionally, we investigate two algorithms for incorporating pitch features in Mandarin Chinese speech recognition. Firstly, we build and test a baseline tonal ASR system with embedded tone modeling by concatenating the cepstral and pitch feature vectors for use as the input to our phonetic model (a Hidden Markov Model, or HMM). We find that our embedded tone modeling algorithm does improve performance on Mandarin Chinese, showing that including tonal information is in fact contributive for Mandarin Chinese speech recognition. Secondly, we implement and test the effectiveness of HMM-based multistream models.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. Cataloged from PDF version of thesis. Includes bibliographical references (p. 53-56).
Date issued
2009Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer SciencePublisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.