dc.contributor.advisor | David J. Perreault. | en_US |
dc.contributor.author | Hayman, Alexander Khaled | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2011-02-23T15:02:31Z | |
dc.date.available | 2011-02-23T15:02:31Z | |
dc.date.copyright | 2009 | en_US |
dc.date.issued | 2009 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/61308 | |
dc.description | Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 77). | en_US |
dc.description.abstract | In typical solar power installations, multiple modules are connected to the grid through a single high-power inverter. However, an alternative approach is to connect each solar module directly to the grid through a micro-inverter. This approach makes the system robust to single module failures and results in better power tracking. This project involves the development of a next generation micro-inverter architecture, including the design, assembly, and testing of a prototype converter. The topology involves a full bridge resonant inverter at the input, which supplies high-frequency current through a transformer to a cycloconverter at the output. | en_US |
dc.description.statementofresponsibility | by Alexander Khaled Hayman. | en_US |
dc.format.extent | 77 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Development of a high-efficiency solar micro-inverter | en_US |
dc.type | Thesis | en_US |
dc.description.degree | M.Eng. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 702674669 | en_US |