MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On decision making in tandem networks

Author(s)
Dia, Manal
Thumbnail
DownloadFull printable version (5.499Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
John N. Tsitsiklis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We study the convergence of Bayesian learning in a tandem social network. Each agent receives a noisy signal about the underlying state of the world, and observes her predecessor's action before choosing her own. We characterize the conditions under which, as the network grows larger, agents' beliefs converge to the true state of the world. The literature has predominantly focused on the case where the number of possible actions is equal to that of alternative states. We examine the case where agents pick three-valued actions to learn one of two possible states of the world. We focus on myopic strategies, and distinguish between learning in probability and learning almost surely. We show that ternary actions are not sufficient to achieve learning (almost sure or in probability) when the likelihood ratios of the private signals are bounded. When the private signals can be arbitrarily informative (unbounded likelihood ratios), we show that there is learning, in probability. Finally, we report an experimental test of how individuals learn from the behavior of others. We explore sequential decision making in a game of three players, where each decision maker observes her immediate predecessor's binary or ternary action. Our experimental design uses Amazon Mechanical Turk, and is based on a setup with continuous signals, discrete actions and a cutoff elicitation technique introduced in [QK05). We replicate the findings of the experimental economics literature on observational learning in the binary action case and use them as a benchmark. We find that herds are less frequent when subjects use three actions instead of two. In addition, our results suggest that with ternary actions, behavior in the laboratory is less consistent with the predictions of Bayesian behavior than with binary actions.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
"September 2009." Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 81-82).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/61310
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.