MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimizing secure communication standards for disadvantaged networks

Author(s)
Okano, Stephen Hiroshi
Thumbnail
DownloadFull printable version (10.68Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Roger Khazan and Joseph Cooley.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present methods for optimizing standardized cryptographic message protocols for use on disadvantaged network links. We first provide an assessment of current secure communication message packing standards and their relevance to disadvantaged networks. Then we offer methods to reduce message overhead in packing Cryptographic Message Syntax (CMS) structures by using ZLIB compression and using a Lite version of CMS. Finally, we offer a few extensions to the Extensible Messaging and Presence Protocol (XMPP) to wrap secure group messages for chat on disadvantaged networks and to reduce XMPP message overhead in secure group transmissions. We present the design and implementation of these optimizations and the results that these optimizations have on message overhead, extensibility, and usability of both CMS and XMPP. We have developed these methods to extend CMS and XMPP with the ultimate goal of establishing standards for securing communications in disadvantaged networks.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 137-140).
 
Date issued
2009
URI
http://hdl.handle.net/1721.1/61316
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.