MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localization and fractality in inhomogeneous quantum walks with self-duality

Author(s)
Shikano, Yutaka; Katsura, Hosho
Thumbnail
DownloadShikano-2010-Localization and fra.pdf (266.8Kb)
PUBLISHER_POLICY

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
We introduce and study a class of discrete-time quantum walks on a one-dimensional lattice. In contrast to the standard homogeneous quantum walks, coin operators are inhomogeneous and depend on their positions in this class of models. The models are shown to be self-dual with respect to the Fourier transform, which is analogous to the Aubry-André model describing the one-dimensional tight-binding model with a quasiperiodic potential. When the period of coin operators is incommensurate to the lattice spacing, we rigorously show that the limit distribution of the quantum walk is localized at the origin. We also numerically study the eigenvalues of the one-step time evolution operator and find the Hofstadter butterfly spectrum which indicates the fractal nature of this class of quantum walks.
Date issued
2010-09
URI
http://hdl.handle.net/1721.1/61329
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physical Review E
Publisher
American Physical Society
Citation
Shikano, Yutaka, and Hosho Katsura. “Localization and fractality in inhomogeneous quantum walks with self-duality.” Physical Review E 82.3 (2010): 031122. © 2010 The American Physical Society.
Version: Final published version
ISSN
1539-3755
1550-2376

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.