MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Alignment and actuation of compliant nanostructures and diffractive optics by inter-nanomagnet forces

Author(s)
Deterre, Martin (Martin Michel Jacques)
Thumbnail
DownloadFull printable version (4.711Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
George Barbastathis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents a novel method to stretch flexible nanostructures by nanomagnets interaction forces. We discuss the ability of different types of nanomagnets to distort several types of structures in two different cases. In the first, this method is applied for precise self-alignment of nanomembranes with applications in three-dimensional nanostructures manufacturing as well as distortion and patterning errors correction in a promising unconventional way. The second application addressed in this work shows the ability of nanomagnets to tune diffractive optical elements through deformation and actuation of nanostructured freestanding beams such as in a diffraction grating. This actuation combines the advantages of both analog and digital tuning techniques. For both applications, theoretical work, simulations, fabrication and experimental results demonstrating the promising power of nanomagnets over structural rigidity are presented.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 125-129).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61524
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.