MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic generation of sound synthesis techniques

Author(s)
García, Ricardo A. (Ricardo Antonio), 1974-
Thumbnail
DownloadFull printable version (8.998Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciences.
Advisor
Barry L. Vercoe.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Digital sound synthesizers, ubiquitous today in sound cards, software and dedicated hardware, use algorithms (Sound Synthesis Techniques, SSTs) capable of generating sounds similar to those of acoustic instruments and even totally novel sounds. The design of SSTs is a very hard problem. It is usually assumed that it requires human ingenuity to design an algorithm suitable for synthesizing a sound with certain characteristics. Many of the SSTs commonly used are the fruit of experimentation and a long refinement processes. A SST is determined by its "functional form" and "internal parameters". Design of SSTs is usually done by selecting a fixed functional form from a handful of commonly used SSTs, and performing a parameter estimation technique to find a set of internal parameters that will best emulate the target sound. A new approach for automating the design of SSTs is proposed. It uses a set of examples of the desired behavior of the SST in the form of "inputs + target sound". The approach is capable of suggesting novel functional forms and their internal parameters, suited to follow closely the given examples. Design of a SST is stated as a search problem in the SST space (the space spanned by all the possible valid functional forms and internal parameters, within certain limits to make it practical). This search is done using evolutionary methods; specifically, Genetic Programming (GP). A custom language for representing and manipulating SSTs as topology graphs and expression trees is proposed, as well as the mapping rules between both representations. Fitness functions that use analytical and perceptual distance metrics between the target and produced sounds are discussed. The AGeSS system (Automatic Generation of Sound Synthesizers) developed in the Media Lab is outlined, and some SSTs and their evolution are shown.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2001.
 
Includes bibliographical references (p. 97-98).
 
Date issued
2001
URI
http://hdl.handle.net/1721.1/61542
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program In Media Arts and Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.