MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design and simulation of a PCI Express Gen 3.0 communication channel

Author(s)
Warnakulasuriyarachchi, Dilini (Dilini M.)
Thumbnail
DownloadFull printable version (7.720Mb)
Alternative title
Design and simulation of a Peripheral Component Interconnect Express Gen 3.0 communication channel
Design and simulation of a PCIe Gen 3.0 communication channel
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Scott Westbrook and Vladimir Stojanovic.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
PCI Express (PCIe) is a serial interconnect technology, developed by the PCI-Sig organization, which provides high bandwidth data transmission with the added benefits of reduced board space requirements, smaller connectors and simplified PCB layouts. Since faster and faster data rates are more desirable, PCIe Gen 3.0 attempts to transmit data at 8GT/s. As part of the thesis work, an existing model of a PCIe channel which connects two controller boards over a backplane, was simulated and measured under PCIe Gen 2.0 speeds (5GT/s). The resulting data from these tests were used to provide the basis for improving the model to make it function under PCIe Gen 3.0 specifications. This was achieved by exploring new receiver equalization techniques and transmitter de-emphasis and board characteristics. An integrated circuit manufacturer's model was used as the base model for PCIe Gen 2.0. This model was further developed to simulate Gen 3.0 speeds. Simulation software tools such as HSPICE, Ansoft HFSS, Ansoft Via Wizard 3.0 and MATLAB were utilized. A simulation model of the system functioning under PCIe Gen 3.0 specifications was successfully developed by using CTLE equalization technique.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 50-51).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61581
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.