MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical Solution of Elliptic Boundary Value Problems by Spline Functions

Author(s)
Shah, Jayant M.
Thumbnail
DownloadAIM-159.ps (10.34Mb)
Additional downloads
AIM-159.pdf (863.1Kb)
Metadata
Show full item record
Abstract
A numerical method for solving linear, two-dimensional elliptic boundary value problems is presented. The method is essentially the Ritz procedure which uses; polynomial spline functions to approximate the exact solution. The spline functions are constructed by defining a polynomial function over each of a set of disjoint subdomains and imposing certain compatibility conditions along common boundaries between subdomains. The main advantage of the methods is that it does not even require the continuity of the spline functions across the boundaries between subdomains. Therefore it is easy to construct classes of spline functions which will produce any specified rate of convergence.
Date issued
1968-04-01
URI
http://hdl.handle.net/1721.1/6164
Other identifiers
AIM-159
Series/Report no.
AIM-159

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.