MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Methods and applications in computational protein design

Author(s)
Biddle, Jason Charles
Thumbnail
DownloadFull printable version (1.677Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Bruce Tidor.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, we summarize our work on applications and methods for computational protein design. First, we apply computational protein design to address the problem of degradation in stored proteins. Specifically, we target cysteine, asparagine, glutamine, and methionine amino acid residues to reduce or eliminate a protein's susceptibility to degradation via aggregation, deamidation, and oxidation. We demonstrate this technique on a subset of degradation-prone amino acids in phosphotriesterase, an enzyme that hydrolyzes toxic organophosphates including pesticides and chemical warfare agents. Second, we introduce BroMAP/A*, an exhaustive branch-and- bound search technique with enumeration. We compare performance of BroMAP/A* to DEE/A*, the current standard for conformational search with enumeration in the protein design community. When limited computational resources are available, DEE/A* sometimes fails to find the global minimum energy conformation and/or enumerate the lowest-energy conformations for large designs. Given the same computational resources, we show how BroMAP/A* is able to solve large designs by efficiently dividing the search space into small, solvable subproblems.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 107-111).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61792
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.