MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a table top quantum computer

Author(s)
Maguire, Yael G., 1975-
Thumbnail
DownloadFull printable version (19.25Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciences.
Advisor
Neil Gershenfeld.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In the early 1990s, quantum computing proved to be an enticing theoretical possibility but a extremely difficult experimental challenge. Two advances have made experimental quantum computing demonstrable: Quantum error correction; and bulk, thermal quantum computing using nuclear magnetic resonance (NMR). Simple algorithms have been implemented on large, commercial NMR spectrometers that are expensive and cumbersome. The goal of this project is to construct a table-top quantum computer that can match and eventually exceed the performance of commercial machines. This computer should be an inexpensive, easy-to-use machine that can be considered more a computer than its "supercomputer" counterparts. For this thesis, the goal is to develop a low-cost, table-top quantum computer capable of implementing simple quantum algorithms demonstrated thus far in the community, but is also amenable to the many scaling issues of practical quantum computing. Understanding these scaling issues requires developing a theoretical understanding of the signal enhancement techniques and fundamental noise sources of this powerful but delicate system. Complementary to quantum computing, this high performance but low cost NMR machine will be useful for a number of medical, low cost sensing and tagging applications due the unique properties of NMR: the ability to sense and manipulate the information content of materials on macroscopic and microscopic scales.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.
 
Includes bibliographical references (leaves 135-139).
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/61842
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program In Media Arts and Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.