MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The measurement and interpretation of actively modulated static ankle impedance using a therap[e]utic robot

Author(s)
Ho, Patrick, S.M. Massachusetts Institute of Technology
Thumbnail
DownloadFull printable version (4.365Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Mechanical Engineering.
Advisor
Neville Hogan.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In this thesis, I conducted an in-vivo study providing measurements of human static ankle mechanical impedance. Accurate measurements of ankle impedance when muscles were voluntarily activated were obtained using a therapeutic robot, Anklebot, and an electromyographic recording system. Important features of ankle impedance, and their variation with muscle activity, are discussed, including magnitude, symmetry and directions of minimum and maximum impedance. Voluntary muscle activation has a significant impact on ankle impedance, increasing it by up to a factor of three in our experiments. Furthermore, significant asymmetries and deviations from a linear two-spring model are present in many subjects, indicating that ankle impedance has a complex and individually idiosyncratic structure. I propose the use of Fourier series as a general representation, providing both insight and a precise quantitative characterization of human static ankle impedance.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 59).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/61869
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Mechanical Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.