Show simple item record

dc.contributor.advisorIan W. Hunter.en_US
dc.contributor.authorKeng, Yenmeien_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2011-03-24T20:20:37Z
dc.date.available2011-03-24T20:20:37Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61879
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 102-103).en_US
dc.description.abstractConducting polymers serve as electrically conductive actuators via ion diffusion in and out of the polymer when voltages are applied. Their actuation performance can be largely affected by deposition setup, post-deposition processing, type of electrolyte, applied voltage for actuation, and temperature. It was shown that increasing temperature caused higher active stress in polypyrrole, an attractive conducting polymer actuator material. However, detailed characterizations were lacking to determine whether the improved active stress was caused by structural change in the polymer and/or charging effect. A temperature-controlled solvent bath was integrated with a custom-built electrochemical dynamic mechanical analyzer to conduct isometric and isotonic tests on polypyrrole under elevated temperature. Experimental results showed that heating increased the charge transport through the polymer and thermal expansion in the polymer allowed more room for charge uptake. As a result, increase in ion movement largely contributed to improvements in actuation stress (rate) and strain (rate), while the decrease in stiffness due to heating had limited effect. Moreover, actuation performance was further improved by choosing large active ion type, BMIM. Although the active stress and strain increased via heating, creep limits the reversibility of conducting polymer actuators. To reduce creep rate, functionalized multi-walled carbon nanotubes (fCNTs) were introduced to fabricate composites with polypyrrole and with PEDOT. Out of four attempted fabrication techniques, drop-casted multilayer structure demonstrated that increasing the amount of fCNTs reduced creep rate, but also decreased active strain, stiffness, and conductivity. Applying higher preload (up to 3 MPa) improved active strain in the composites by providing more space for charge uptake. The amount of sCNTs that provided optimal performance was approximately 20-30% by weight.en_US
dc.description.statementofresponsibilityby Yenmei (Kerri) Keng.en_US
dc.format.extent114 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleThe effects of temperature and carbon nanotubes on conducting polymer actuator performanceen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc706138235en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record