Show simple item record

dc.contributor.advisorJohn Waterbury.en_US
dc.contributor.authorRichberg, Kevin Patricken_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2011-03-24T20:22:03Z
dc.date.available2011-03-24T20:22:03Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61888
dc.descriptionThesis (S.M.)--Joint Program in Biological Oceanography (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 47-54).en_US
dc.description.abstractAt deep-sea hydrothermal vents chemolithoautotrophic microbes mediate the transfer of geothermal chemical energy to higher trophic levels. To better understand these underlying processes and the organisms catalyzing them, this research used DNA Stable Isotope Probing (SIP) combined with Catalyzed Activated Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) to identify the microorganisms chemoautotrophically supporting the food web at a diffuse flow hydrothermal vent. Both anaerobic and aerobic shipboard incubations containing various augmented electron donor and acceptor species showed that Epsilonproteobacteria were the dominant chemoautotrophs with greater than 70% of the cells counted within the first 24 hours. 13C DNA SIP identified unique organisms not previously characterized from low temperature diffuse flow venting: green sulfur bacteria (Chlorobi-like organisms) possibly utilizing photoautotrophy, aerobic Lutibacter litoralis-like organisms growing under anaerobic conditions, and Epsilonproteobacterial Thioreductor sp. at temperatures above maximum known tolerances. This research illustrates both the promise and pitfalls of the SIP technique applied to hydrothermal systems, concluding that timing of the incubation experiments is the critical step in eliminating undesired 13C labeling. These results set the stage for a more thorough future examination of diffuse flow microorganisms by presenting interesting questions that second generation experiments could be designed to answer.en_US
dc.description.statementofresponsibilityby Kevin Patrick Richberg.en_US
dc.format.extent54 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Biological Oceanography.en_US
dc.subjectBiology.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleIdentification of chemoautotrophic microorganisms from a diffuse flow hydrothermal vent at EPR 9° north using ¹³C DNA stable isotope probing and catalyzed activated reporter deposition-fluorescence in situ hybridizationen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentJoint Program in Biological Oceanography.en_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc706714733en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record