Show simple item record

dc.contributor.advisorMartin L. Culpepper.en_US
dc.contributor.authorTelleria, Maria Jen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Mechanical Engineering.en_US
dc.date.accessioned2011-03-24T20:27:39Z
dc.date.available2011-03-24T20:27:39Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/61925
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 139-140).en_US
dc.description.abstractThis thesis explains when, and why, solder-based phase change materials (PCMs) are best-suited as a means to modify a robotic mechanism's kinematic and elastomechanic behavior. The preceding refers to mechanisms that possess joints which may be thermally locked and unlocked via a material phase change within the joint. Different combinations of locked and unlocked joints yield different one-DOF mechanisms states. A single actuator is used to control motion allowed by the different states. By reducing the number of required actuators, solderlocking joints enable the creation of compliant centimeter-scale mechanisms that can perform a multiplicity of tasks. Herein, this thesis presents physics-based design insights that provide understanding of how solder-based material properties and joint design dominate joint performance characteristics. First order models are used to demonstrate selection of suitable PCMs and how to set initial joint geometry prior to fine tuning via detailed FEA models and experiments. The first order models result in order-of-magnitude estimates of the locking and unlocking times for the joints. The insights and models are discussed in the context of two case studies. Squishbot1 is a crawling robot that uses a single spooler motor and three solder-locking joints to crawl and steer. Squishbot 1 is able to reconfigure its joints in approximately 10 seconds. SquishTendons utilizes solder-locking joints to actuate a compliant structure with a single motor. The second robot used the complete set of models and rules to improve on the performance of Squishbotl. SquishTendons can unlock and lock its joints in less than 6 seconds.en_US
dc.description.statementofresponsibilityby Maria J. Telleria.en_US
dc.format.extent149 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectMechanical Engineering.en_US
dc.titleModeling and implementation of solder-activated joints for single actuator, centimeter-scale robotic mechanismsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.identifier.oclc707344973en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record