Show simple item record

dc.contributor.advisorAlexander M. Klibanov.en_US
dc.contributor.authorFortune, Jennifer Aen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Chemistry.en_US
dc.date.accessioned2011-04-04T16:17:49Z
dc.date.available2011-04-04T16:17:49Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/62052
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemistry, 2010.en_US
dc.descriptionVita. Cataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractLinear polyethylenimine (PEI) is the "gold standard" of polycationic gene delivery vectors. However, little focus has been placed on enhancing or understanding the specificity of PEImediated gene delivery. Herein we evaluated the effect of chemical modification on the specificity of PEI-mediated nucleic acid delivery. We found that low molecular weight PEI (2 kDa) does not mediate efficient gene expression while high molecular weight (> 87 kDa) leads to toxicity. However, linear PEI of 25 kDa is an efficient gene delivery vector for both DNA and siRNA. Therefore, this PEI was chemically modified to explore the relationship between structure and specificity. First, PEI was covalently attached to a monoclonal anti-angiotensin I-converting enzyme (ACE) antibody (PEI-9B9) and evaluated for its ability to target PEI-9B9 polyplexes following intravenous delivery in a rat. Although mAb 9B9 retains affinity for its substrate ACE, PEI-9B9 does not enhance delivery to its intended target, the lung. Clearance of PEI-9B9 from circulation likely occurs before antibody binding to the surface expressed antigen. Next, we evaluated the ability of hydrophobic modification to modulate specificity of PEIbased gene delivery. Linear PEI was alkylated with variable length hydrocarbon chains at varying percent modification and evaluated for effective and specific gene delivery following intravenous delivery in mice. Modest alkylation (11% modification with ethyl chains to produce N-ethyl-PEI) enhances gene delivery in the lung 26-fold while quadrupling the ratio of gene product expressed in the lung relative to other organs. Interestingly, specificity profiles of the various alkyl chain derivatives vary among the organs examined. Additionally, a topical approach to gene delivery was investigated. Small branched PEI was cross-linked to gold to create PEI-gold nanoparticles (PEI-GNPs). These polycations were complexed with DNA and delivered topically to scratched rabbit cornea. PEI-GNPs effectively transfected corneal endothelium and evoked expression of the plasmid DNA without causing significant immunogenicity or toxicity. Finally, the effect of radiation on biologics was evaluated using a rigorously controlled experimental design with extreme conditions to unequivocally determine if radiofrequency radiation (RFR) has a non-thermal effect on biologics. Neither enzymes nor living cells (both bacterial and mammalian) were affect non-thermally by RFR.en_US
dc.description.statementofresponsibilityby Jennifer A. Fortune.en_US
dc.format.extent131 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectChemistry.en_US
dc.titleSpecific and efficient in vivo delivery of DNA and siRNA by polyethylenimine and its derivativesen_US
dc.title.alternativeSpecific and efficient in vivo delivery of deoxyribonucleic acid and small interfering ribonucleic acid by polyethylenimine and its derivativesen_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.identifier.oclc707925570en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record