MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Numerical modeling of methane venting from lake sediments

Author(s)
Scandella, Benjamin P. (Benjamin Paul)
Thumbnail
DownloadFull printable version (4.231Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Civil and Environmental Engineering.
Advisor
Ruben Juanes.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The dynamics of methane transport in lake sediments control the release of methane into the water column above, and the portion that reaches the atmosphere may contribute significantly to the greenhouse effect. The observed dynamics are poorly understood. In particular, variations in the hydrostatic load on the sediments, from both water level and barometric pressure, appear to trigger free gas bubbling (ebullition). We develop a model of methane bubble ow through the sediments, forced by changes in hydrostatic load. The mechanistic, numerical model is tuned to and compared against ebullition data from Upper Mystic Lake, MA, and the predictions match the daily temporal character of the observed gas releases. We conclude that the combination of plastic gas cavity deformation and ow through "breathing" gas conduits explains methane venting from lake sediments. This research lays the groundwork for integrated modeling of methane transport in the sediment and water column to constrain the atmospheric flux from methane-generating lakes.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2010.
 
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
 
Cataloged from student-submitted PDF version of thesis.
 
Includes bibliographical references (p. 91-96).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/62088
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Publisher
Massachusetts Institute of Technology
Keywords
Civil and Environmental Engineering.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.