dc.contributor.author | Demaine, Erik D. | |
dc.contributor.author | Demaine, Martin L. | |
dc.contributor.author | Uehara, Ryuhei | |
dc.date.accessioned | 2011-04-20T19:54:46Z | |
dc.date.available | 2011-04-20T19:54:46Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/62257 | |
dc.description.abstract | We show how to construct interlocked collections of simple
polygons in the plane that fall apart upon removing
certain combinations of pieces. Precisely, interior-disjoint
simple planar polygons are interlocked if no
subset can be separated arbitrarily far from the rest,
moving each polygon as a rigid object as in a sliding-block
puzzle. Removing a subset S of these polygons
might keep them interlocked or free the polygons, allowing
them to separate. Clearly freeing removal sets
satisfy monotonicity: if S S [prime] and removing S frees
the polygons, then so does S [prime]. In this paper, we show
that any monotone Boolean function f on n variables
can be described by m > n interlocked polygons: n of
the m polygons represent the n variables, and removing
a subset of these n polygons frees the remaining
polygons if and only if f is 1 when the corresponding
variables are 1. | en_US |
dc.language.iso | en_US | |
dc.publisher | University of Manitoba | en_US |
dc.relation.isversionof | http://www.cs.umanitoba.ca/~cccg2010/accepted.html | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike 3.0 | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/3.0/ | en_US |
dc.source | MIT web domain | en_US |
dc.title | Any Monotone Boolean Function Can Be Realized by Interlocked Polygons | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Demaine, Erik D., Martin L. Demaine, Ryuhei Uehara. "Any Monotone Boolean Function Can Be Realized by Interlocked Polygon" Canadian Conference on Computational Geometry, Aug. 9-11, 2010. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | en_US |
dc.contributor.approver | Demaine, Erik D. | |
dc.contributor.mitauthor | Demaine, Erik D. | |
dc.contributor.mitauthor | Demaine, Martin L. | |
dc.relation.journal | Canadian Conference on Computational Geometry (CCCG). Proceedings | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
dspace.orderedauthors | Demaine, Erik D.; Demaine, Martin L.; Uehara, Ryuhei | |
dc.identifier.orcid | https://orcid.org/0000-0003-3803-5703 | |
mit.license | OPEN_ACCESS_POLICY | en_US |
mit.metadata.status | Complete | |