Show simple item record

dc.contributor.authorDemaine, Erik D.
dc.contributor.authorDemaine, Martin L.
dc.contributor.authorUehara, Ryuhei
dc.date.accessioned2011-04-20T19:54:46Z
dc.date.available2011-04-20T19:54:46Z
dc.date.issued2010
dc.identifier.urihttp://hdl.handle.net/1721.1/62257
dc.description.abstractWe show how to construct interlocked collections of simple polygons in the plane that fall apart upon removing certain combinations of pieces. Precisely, interior-disjoint simple planar polygons are interlocked if no subset can be separated arbitrarily far from the rest, moving each polygon as a rigid object as in a sliding-block puzzle. Removing a subset S of these polygons might keep them interlocked or free the polygons, allowing them to separate. Clearly freeing removal sets satisfy monotonicity: if S S [prime] and removing S frees the polygons, then so does S [prime]. In this paper, we show that any monotone Boolean function f on n variables can be described by m > n interlocked polygons: n of the m polygons represent the n variables, and removing a subset of these n polygons frees the remaining polygons if and only if f is 1 when the corresponding variables are 1.en_US
dc.language.isoen_US
dc.publisherUniversity of Manitobaen_US
dc.relation.isversionofhttp://www.cs.umanitoba.ca/~cccg2010/accepted.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourceMIT web domainen_US
dc.titleAny Monotone Boolean Function Can Be Realized by Interlocked Polygonsen_US
dc.typeArticleen_US
dc.identifier.citationDemaine, Erik D., Martin L. Demaine, Ryuhei Uehara. "Any Monotone Boolean Function Can Be Realized by Interlocked Polygon" Canadian Conference on Computational Geometry, Aug. 9-11, 2010.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.approverDemaine, Erik D.
dc.contributor.mitauthorDemaine, Erik D.
dc.contributor.mitauthorDemaine, Martin L.
dc.relation.journalCanadian Conference on Computational Geometry (CCCG). Proceedingsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
dspace.orderedauthorsDemaine, Erik D.; Demaine, Martin L.; Uehara, Ryuhei
dc.identifier.orcidhttps://orcid.org/0000-0003-3803-5703
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record