MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Representation and recognition of action in interactive spaces

Author(s)
Pinhanez, Claudio S
Thumbnail
DownloadFull printable version (25.30Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciences.
Advisor
Aaron F. Bobick.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis presents new theory and technology for the representation and recognition of complex, context-sensitive human actions in interactive spaces. To represent action and interaction a symbolic framework has been developed based on Roger Schank's conceptualizations, augmented by a mechanism to represent the temporal structure of the sub-actions based on Allen's interval algebra networks. To overcome the exponential nature of temporal constraint propagation in such networks, we have developed the PNF propagation algorithm based on the projection of IA-networks into simplified, 3-valued (past, now, future) constraint networks called PNF-networks. The PNF propagation algorithm has been applied to an action recognition vision system that handles actions composed of multiple, parallel threads of sub-actions, in situations that can not be efficiently dealt by the commonly used temporal representation schemes such as finite-state machines and HMMs. The PNF propagation algorithm is also the basis of interval scripts, a scripting paradigm for interactive systems that represents interaction as a set of temporal constraints between the individual components of the interaction. Unlike previously proposed non-procedural scripting methods, we use a strong temporal representation (allowing, for example, mutually exclusive actions) and perform control by propagating the temporal constraints in real-time. These concepts have been tested in the context of four projects involving story-driven interactive spaces. The action representation framework has been used in the Intelligent Studio project to enhance the control of automatic cameras in a TV studio. Interval scripts have been extensively employed in the development of "SingSong ", a short interactive performance that introduced the idea of live interaction with computer graphics characters; in "It/I", a full-length computer theater play; and in "It", an interactive art installation based on the play "It /I" that realizes our concept of immersive stages, that is, interactive spaces that can be used both by performers and public.
Description
Thesis (Ph.D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.
 
Includes bibliographical references (p. 246-258).
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/62342
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program In Media Arts and Sciences.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.