MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

E-broidery : an infrastructure for washable computing

Author(s)
Post, E. Rehmi, 1966-
Thumbnail
DownloadFull printable version (5.639Mb)
Alternative title
Infrastructure for washable computing
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture. Program In Media Arts and Sciences.
Advisor
Neil Gershenfeld.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Wash-and-wear multilayer electronic circuitry can be constructed on fabric substrates, using conductive textiles and suitably packaged components. Fabrics are perhaps the first composite materials engineered by humanity; their evolution led to the development of the Jacquard loom, which itself led to the development of the modern computer. The development of fabric circuitry is a compelling closure of the cycle that points to a new class of textiles which interact with their users and their environments, while retaining the properties that made them the first ubiquitous "smart material". Fabrics are in several respects superior to existing flexible substrates in terms of their durability, conformability, and breathability. The present work adopts a modular approach to circuit fabrication, from which follow circuit design techniques and component packages optimized for use in fabric-based circuitry, flexible all-fabric interconnects, and multilayer circuits. While maintaining close compatibility with existing components, tools, and techniques, the present work demonstrates all steps of a process to create multilayer printed circuits on fabric substrates using conductive textiles.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 1999.
 
Includes bibliographical references (leaves 73-74).
 
Date issued
1999
URI
http://hdl.handle.net/1721.1/62351
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Massachusetts Institute of Technology
Keywords
Architecture. Program In Media Arts and Sciences.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.