Show simple item record

dc.contributor.advisorLizhong Zheng.en_US
dc.contributor.authorChan, Chung, Ph. D. Massachusetts Institute of Technologyen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-04-25T15:50:52Z
dc.date.available2011-04-25T15:50:52Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/62386
dc.descriptionThesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 247-253) and index.en_US
dc.description.abstractThis monograph studies the theory of information through the multiuser secret key agreement problem. A general notion of mutual dependence is established for the secrecy capacity, as a natural generalization of Shannon's mutual information to the multivariate case. Under linear-type source models, this capacity can be achieved practically by linear network codes. In addition to being an unusual application of the network coding solution to a secrecy problem, it gives secrecy capacity an interpretation of network information flow and partition connectivity, further confirming the intuitive meaning of secrecy capacity as mutual dependence. New identities in submodular function optimization and matroid theory are discovered in proving these results. A framework is also developed to view matroids as graphs, allowing certain theory on graphs to generalize to matroids. In order to study cooperation schemes in a network, a general channel model with multiple inputs is formulated. Single-letter secrecy capacity upper bounds are derived using the Shearer-type lemma. Lower bounds are obtained with a new cooperation scheme called the mixed source emulation. In the same way that mixed strategies may surpass pure strategies in zero-sum games, mixed source emulation outperforms the conventional pure source emulation approach in terms of the achievable key rate. Necessary and sufficient conditions are derived for tightness of these secrecy bounds, which shows that secrecy capacity can be characterized for a larger class of channels than the broadcast-type channels considered in previous work. The mixed source emulation scheme is also shown to be unnecessary for some channels while insufficient for others. The possibility of a better cooperative scheme becomes apparent, but a general scheme remains to be found.en_US
dc.description.statementofresponsibilityby Chung Chan.en_US
dc.format.extent255 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleGenerating secret in a networken_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc709778157en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record