MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Asymptotic performance of queue length based network control policies

Author(s)
Jagannathan, Krishna Prasanna
Thumbnail
DownloadFull printable version (11.42Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Eytan H. Modiano.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
In a communication network, asymptotic quality of service metrics specify the probability that the delay or buffer occupancy becomes large. An understanding of these metrics is essential for providing worst-case delay guarantees, provisioning buffer sizes in networks, and to estimate the frequency of packet-drops due to buffer overflow. Second, many network control tasks utilize queue length information to perform effectively, which inevitably adds to the control overheads in a network. Therefore, it is important to understand the role played by queue length information in network control, and its impact on various performance metrics. In this thesis, we study the interplay between the asymptotic behavior of buffer occupancy, queue length information, and traffic statistics in the context of scheduling, flow control, and resource allocation. First, we consider a single-server queue and deal with the question of how often control messages need to be sent in order to effectively control congestion in the queue. Our results show that arbitrarily infrequent queue length information is sufficient to ensure optimal asymptotic decay for the congestion probability, as long as the control information is accurately received. However, if the control messages are subject to errors, the congestion probability can increase drastically, even if the control messages are transmitted often. Next, we consider a system of parallel queues sharing a server, and fed by a statistically homogeneous traffic pattern. We obtain the large deviation exponent of the buffer overflow probability under the well known max-weight scheduling policy. We also show that the queue length based max-weight scheduling outperforms some well known queue-blind policies in terms of the buffer overflow probability. Finally, we study the asymptotic behavior of the queue length distributions when a mix of heavy-tailed and light-tailed traffic flows feeds a system of parallel queues. We obtain an exact asymptotic queue length characterization under generalized max-weight scheduling. In contrast to the statistically homogeneous traffic scenario, we show that max-weight scheduling leads to poor asymptotic behavior for the light-tailed traffic, whereas a queue-blind priority policy gives good asymptotic behavior.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 199-204).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/62419
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.