MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Algebraic methods in randomness and pseudorandomness

Author(s)
Kopparty, Swastik
Thumbnail
DownloadFull printable version (10.44Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Algebra and randomness come together rather nicely in computation. A central example of this relationship in action is the Schwartz-Zippel lemma and its application to the fast randomized checking of polynomial identities. In this thesis, we further this relationship in two ways: (1) by compiling new algebraic techniques that are of potential computational interest, and (2) demonstrating the relevance of these techniques by making progress on several questions in randomness and pseudorandomness. The technical ingredients we introduce include: " Multiplicity-enhanced versions of the Schwartz-Zippel lenina and the "polynomial method", extending their applicability to "higher-degree" polynomials. " Conditions for polynomials to have an unusually small number of roots. " Conditions for polynomials to have an unusually structured set of roots, e.g., containing a large linear space. Our applications include: * Explicit constructions of randomness extractors with logarithmic seed and vanishing "entropy loss". " Limit laws for first-order logic augmented with the parity quantifier on random graphs (extending the classical 0-1 law). " Explicit dispersers for affine sources of imperfect randomness with sublinear entropy.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 183-188).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/62425
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.