MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-signal gesture recognition using body and hand poses

Author(s)
Song, Yale
Thumbnail
DownloadFull printable version (16.78Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Randall Davis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We present a vision-based multi-signal gesture recognition system that integrates information from body and hand poses. Unlike previous approaches to gesture recognition, which concentrated mainly on making it a signal signal, our system allows a richer gesture vocabulary and more natural human-computer interaction. The system consists of three parts: 3D body pose estimation, hand pose classification, and gesture recognition. 3D body pose estimation is performed following a generative model-based approach, using a particle filtering estimation framework. Hand pose classification is performed by extracting Histogram of Oriented Gradients features and using a multi-class Support Vector Machine classifier. Finally, gesture recognition is performed using a novel statistical inference framework that we developed for multi-signal pattern recognition, extending previous work on a discriminative hidden-state graphical model (HCRF) to consider multi-signal input data, which we refer to Multi Information-Channel Hidden Conditional Random Fields (MIC-HCRFs). One advantage of MIC-HCRF is that it allows us to capture complex dependencies of multiple information channels more precisely than conventional approaches to the task. Our system was evaluated on the scenario of an aircraft carrier flight deck environment, where humans interact with unmanned vehicles using existing body and hand gesture vocabulary. When tested on 10 gestures recorded from 20 participants, the average recognition accuracy of our system was 88.41%.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 147-154).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/62429
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.