MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced silicon photonic modulators

Author(s)
Sorace, Cheryl M
Thumbnail
DownloadFull printable version (16.93Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Franz X. Kärtner.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is designed, tested and found to operate at speeds up to 13 GHz with a V"L of 1.2 Vcm. MOS capacitor modulator designs are investigated as an alternative, but are not found to offer significant advantages. Modulators are also designed for fabrication in an actual CMOS process -a crucial step in the quest for low-cost integration with modern electronic devices. Photonic crystal structures, which promise smaller footprint sizes and lower power requirements, are also investigated, but it proves difficult to obtain a physically feasible design. Finally, a linearization scheme for Mach-Zehnder modulators is proposed to significantly improve signal fidelity in analog applications. Simulations are used to demonstrate the effectiveness of this scheme for reverse biased silicon diode modulators.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 120-123).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/62431
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.