MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A 9GHz injection locked loop optical clock receiver in 32-nm CMOS

Author(s)
Leu, Jonathan Chung
Thumbnail
DownloadFull printable version (6.527Mb)
Alternative title
Nine gigahertz injection locked loop optical clock receiver in 32-nm CMOS
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Vladimir Stojanović.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The bottleneck of multi-core processors performance will be the I/O, for both on-chip core-to-core I/0, and off-chip core-to-memory. Integrated silicon photonics can potentially provide high-bandwidth low-power signal and clock distribution for multicore processors, by exploiting wavelength-division multiplexing. This thesis presents the technology environment of the monolithic optical/electrical chip, and then focuses on how an optical method would look like for both source-synchronous link and for on-chip global clock distribution. The injection-locked loop clock receiver that suits this architecture breaks the bandwidth/sensitivity tradeoff, and a self-adjusting mechanism is added to increase robustness. The simulated receiver sensitivity is - 14dBm at 9GHz, consuming 77.14pW and generating jitter within 0. 15ps when locked onto a mode-locked laser clock source. The chip infrastructure and testing procedures are then presented, and lastly a truly integrated optical-electrical design flow is shown as well.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 65-68).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/62443
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.