dc.contributor.advisor | Regina Barzilay. | en_US |
dc.contributor.author | Snyder, Benjamin, Ph. D. Massachusetts Institute of Technology | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. | en_US |
dc.date.accessioned | 2011-04-25T16:01:40Z | |
dc.date.available | 2011-04-25T16:01:40Z | |
dc.date.copyright | 2010 | en_US |
dc.date.issued | 2010 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/62455 | |
dc.description | Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 241-254). | en_US |
dc.description.abstract | For centuries, scholars have explored the deep links among human languages. In this thesis, we present a class of probabilistic models that exploit these links as a form of naturally occurring supervision. These models allow us to substantially improve performance for core text processing tasks, such as morphological segmentation, part-of-speech tagging, and syntactic parsing. Besides these traditional NLP tasks, we also present a multilingual model for lost language deciphersment. We test this model on the ancient Ugaritic language. Our results show that we can automatically uncover much of the historical relationship between Ugaritic and Biblical Hebrew, a known related language. | en_US |
dc.description.statementofresponsibility | by Benjamin Snyder. | en_US |
dc.format.extent | 254 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Electrical Engineering and Computer Science. | en_US |
dc.title | Unsupervised multilingual learning | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph.D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science | |
dc.identifier.oclc | 711173292 | en_US |