MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of robust and inverse optimization in transportation

Author(s)
Nguyen, Thai Dung
Thumbnail
DownloadFull printable version (6.632Mb)
Other Contributors
Massachusetts Institute of Technology. Computation for Design and Optimization Program.
Advisor
Dimitris J. Bertsimas and Georgia Perakis.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
We study the use of inverse and robust optimization to address two problems in transportation: finding the travel times and designing a transportation network. We assume that users choose the route selfishly and the flow will eventually reach an equilibrium state (User Equilibrium). The first part of the thesis demonstrates how inverse and robust optimization can be used to find the actual travel times given a stable flow on the network and some noisy information on travel times from different users. We model the users' perception of travel times using three different sets and solve the robust inverse problem for all of them. We also extend the idea to find parametric functional forms for travel times given historical data. Our numerical results illustrate the significant improvement obtained by our models over a simple fitting model. The second part of the thesis considers the network design problem under demand uncertainty. We show that for affine travel time functions, the deterministic problem can be formulated as a mixed integer programming problem with quadratic objective and linear constraints. For the robust network design problem, we propose a decomposition scheme: breaking a tri-level programming problem into two smaller problems and re-iterating until a good solution is obtained. To deal with the expensive computation required by large networks, we also propose a heuristic robust simulated annealing approach. The heuristic algorithm is computationally tractable and provides some encouragingly results in our simulations.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 79-82).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/62482
Department
Massachusetts Institute of Technology. Computation for Design and Optimization Program
Publisher
Massachusetts Institute of Technology
Keywords
Computation for Design and Optimization Program.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.