MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational Geometry of Linear Threshold Functions

Author(s)
Abelson, Harold
Thumbnail
DownloadAIM-376.ps (2.415Mb)
Additional downloads
AIM-376.pdf (1.794Mb)
Metadata
Show full item record
Abstract
Linear threshold machines are defined to be those whose computations are based on the outputs of a set of linear threshold decision elements. The number of such elements is called the rank of the machine. An analysis of the computational geometry of finite-rank linear threshold machines, analogous to the analysis of finite-order perceptrons given by Minsky and Papert, reveals that the use of such machines as "general purpose pattern recognition systems" is severely limited. For example, these machines cannot recognize any topological invariant, nor can they recognize non-trivial figures "in context".
Date issued
1976-07-01
URI
http://hdl.handle.net/1721.1/6253
Other identifiers
AIM-376
Series/Report no.
AIM-376

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.