Show simple item record

dc.contributor.advisorPiotr Indyk.en_US
dc.contributor.authorPrice, Eric (Eric C.)en_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2011-05-09T15:17:04Z
dc.date.available2011-05-09T15:17:04Z
dc.date.copyright2010en_US
dc.date.issued2010en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/62668
dc.descriptionThesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 69-71).en_US
dc.description.abstractWe consider the following k-sparse recovery problem: design a distribution of m x n matrix A, such that for any signal x, given Ax with high probability we can efficiently recover x satisfying IIx - x l, </-Cmink-sparse x' IIx - x'II. It is known that there exist such distributions with m = O(k log(n/k)) rows; in this thesis, we show that this bound is tight. We also introduce the set query algorithm, a primitive useful for solving special cases of sparse recovery using less than 8(k log(n/k)) rows. The set query algorithm estimates the values of a vector x [epsilon] Rn over a support S of size k from a randomized sparse binary linear sketch Ax of size O(k). Given Ax and S, we can recover x' with IIlx' - xSII2 </- [theta]IIx - xsII2 with probability at least 1 - k-[omega](1). The recovery takes O(k) time. While interesting in its own right, this primitive also has a number of applications. For example, we can: * Improve the sparse recovery of Zipfian distributions O(k log n) measurements from a 1 + [epsilon] approximation to a 1 + o(1) approximation, giving the first such approximation when k </- O(n1-[epsilon]). * Recover block-sparse vectors with O(k) space and a 1 + [epsilon] approximation. Previous algorithms required either w(k) space or w(1) approximation.en_US
dc.description.statementofresponsibilityby Eric Price.en_US
dc.format.extent71 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleAlgorithms and lower bounds for sparse recoveryen_US
dc.typeThesisen_US
dc.description.degreeM.Eng.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc714249160en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record