MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A method of merging VMware disk images through file system unification

Author(s)
Cheng, Sarah X
Thumbnail
DownloadFull printable version (3.733Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science.
Advisor
Stephen A. Ward.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
This thesis describes a method of merging the contents of two VMware disk images by merging the file systems therein. Thus, two initially disparate file systems are joined to appear and behave as a single file system. The problem of file system namespace unification is not a new one, with predecessors dating as far back as 1988 to present-day descendants such as UnionFS and union mounts. All deal with the same major issues - merging directory contents of source branches and handling any naming conflicts (namespace de-duplication), and allowing top-level edits of file system unions in presence of read-only source branches (copy-on-write). The previous solutions deal with exclusively with file systems themselves, and most perform the bulk of the unification logic at runtime. This project is unique in that both the sources and union are disk images that can be directly run as virtual machines. This lets us exploit various features of the VMware disk image format, eventually prompting us to move the unification logic to an entirely offline process. This decision, however, carry a variety of unique implications and side effects, which we shall also discuss in the paper.
Description
Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 67).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/62752
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Publisher
Massachusetts Institute of Technology
Keywords
Electrical Engineering and Computer Science.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.