Show simple item record

dc.contributor.advisorScott M. Gallager.en_US
dc.contributor.authorThompson, Christine Mingioneen_US
dc.contributor.otherWoods Hole Oceanographic Institution.en_US
dc.date.accessioned2011-05-09T15:35:16Z
dc.date.available2011-05-09T15:35:16Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/62785
dc.descriptionThesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Biology; and the Woods Hole Oceanographic Institution), 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractLarval supply is an important process linking reproductive output to recruitment of benthic marine invertebrates. Few species-specific studies of bivalve larvae have been performed due to the lack of suitable methods for species identification. This thesis focused on applying a method to identify larvae from field samples from Waquoit Bay, MA using shell birefringence patterns. This method was then used to address variability in larval supply for three bivalve species on weekly, tidal, and hourly scales. Sampling weekly for six months during two years showed large variability in larval concentrations on this time scale. Abundances of most species were related to bay temperature, and species distributions among sampling sites were indicative of transport potential and population coherence. Greater growth of larvae in 2009 compared to 2007 was attributed to more wind-induced mixing and better food availability in 2009. Integrative samples over each tidal event for a 14-day period demonstrated that larvae were mostly constrained by water masses. During a period when there were sharp tidal signals in temperature and salinity, larval concentrations were higher in bay water compared to coastal waters on incoming tides. After a storm event, water mass properties were less distinct between tidal events and a semidiurnal signal in larval concentrations was no longer apparent. The timing of periods of high larval concentrations did not always coincide with periods of highest water mass flux reducing net export in some cases. On an hourly scale, the vertical distribution of larvae affected by water column stratification and strength of tidal flow. Strong currents and a fresh upper layer both prevented larvae from concentrating at the surface. There was little evidence of peaks in larval concentrations associated with a given tidal period. Species-specific data can provide new perspectives on larval transport. For the three species studied, Anomia simplex, Guekensia demissa, and Mercenaria mercenaria, different source areas, patterns for growth, and potential for export were observed. Applying species-specific identification methods to future studies of bivalve larval transport has the potential to relate larval abundance to settlement patterns, an important component of larval ecology and shellfish management.en_US
dc.description.statementofresponsibilityby Christine Mingione Thompson.en_US
dc.format.extent242 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectJoint Program in Oceanography/Applied Ocean Science and Engineering.en_US
dc.subjectBiology.en_US
dc.subjectWoods Hole Oceanographic Institution.en_US
dc.titleSpecies-specific patterns in bivalve larval supply to a coastal embaymenten_US
dc.typeThesisen_US
dc.description.degreePh.D.en_US
dc.contributor.departmentJoint Program in Oceanography/Applied Ocean Science and Engineeringen_US
dc.contributor.departmentWoods Hole Oceanographic Institutionen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biology
dc.identifier.oclc720640586en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record