MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of charge-exchange recombination spectroscopy measurements of the pedestal region of Alcator C-Mod with neoclassical flow predictions

Author(s)
Marr, Kenneth David
Thumbnail
DownloadFull printable version (21.07Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Physics.
Advisor
Bruce Lipschultz and Earl Marmar.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
The study and prediction of velocities in the pedestal region of Alcator C-Mod are important aspects of understanding plasma confinement and transport. In this study, we examine the simplified neoclassical predictions for impurity flows using equations developed for plasmas with background ions in the Pfirsch-Schliter (PS, high collisionality) and banana (low collisionality) regimes. Measured B5+ flow profiles are derived from the charge-exchange spectroscopy diagnostic on Alcator C-Mod and are compared with calculated profiles for the region just inside the last closed flux surface. For the steep gradient region, reasonable agreement is found between the predictions from the PS regime formalism and the measured poloidal velocities regardless of the collisionality of the plasma. The agreement between the neoclassical predictions using the banana regime formalism and measured velocities is poorer. Additionally, comparisons of measured velocities from the low- and high-field sides of the plasma lead us to infer the strong possiblity of a poloidal asymmetry in the impurity density. This asymmetry can be a factor of 2-3 for the region of the steepest gradients, with the density at the high-field side being larger.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2010.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 151-156).
 
Date issued
2010
URI
http://hdl.handle.net/1721.1/63018
Department
Massachusetts Institute of Technology. Department of Physics
Publisher
Massachusetts Institute of Technology
Keywords
Physics.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.