Show simple item record

dc.contributor.advisorDava J. Newman.en_US
dc.contributor.authorAnderson, Allison P. (Allison Paige)en_US
dc.contributor.otherMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.date.accessioned2011-05-23T18:05:35Z
dc.date.available2011-05-23T18:05:35Z
dc.date.copyright2011en_US
dc.date.issued2011en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/63033
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics; and, (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2011.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 155-161).en_US
dc.description.abstractExtravehicular activity (EVA), or spacewalks allows astronauts to accomplish some of the most important endeavors in space history. The importance of EVA will continue to increase as people venture further into our solar system. The spacesuit, used to protect the astronaut during EVA, is an anthropomorphic spacecraft that provides the physical environment a person needs to survive in the harsh environment of space. Although the suits are safe and effective, the pressurized suit becomes rigid in the vacuum of space, causing the astronaut to waste energy. Mechanical counterpressure (MCP) suits offer an alternative to gas pressurized suits by using elastic garments to provide pressure against the skin. Despite their many advantages, MCP suits are very difficult to put on, or don, making them infeasible for use today. A network of gas pressurized tubes is proposed as a solution to the donning problem. When pressurized, the tubes expand to become rigid, opening the MCP garment in the process. The system was modeled and a functional prototype was developed using a novel construction process. The model can be used as a design tool for future designs and the prototype serves as a proof-of-concept for this solution to the donning problem. The spectacular feats accomplish through spacewalks and space exploration inspire students to pursue an interest and career in science, technology, engineering, and math (STEM). Since its inception, the National Aeronautics and Space Administration (NASA) has been dedicated to educating the public about its compelling mission, fascinating discoveries, and the complicated technologies it develops. However, as the United States slips in indicators of student performance in STEM subjects, many look toward informal education, or education that occurs outside the classroom, to spur interest in STEM subjects. To maximize educational outcomes, NASA has developed a strategic framework to guide its educational programs. This framework is analyzed in the context of strategic management literature and suggests that the framework could be more easily implemented if NASA were to refine its education structure using the strengths of each of its directorates. The proposed framework was implemented in an informal education project and evaluated to determine if a projects implemented under the framework achieves the intended learning objectives. Students showed an increased understanding of NASA's mission and the complicated nature of space exploration. Suggestions to improve future projects are also given.en_US
dc.description.statementofresponsibilityby Allison P. Anderson.en_US
dc.format.extent161 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectAeronautics and Astronautics.en_US
dc.subjectEngineering Systems Division.en_US
dc.subjectTechnology and Policy Program.en_US
dc.titleAddressing design challenges in mechanical counterpressure spacesuit design and space-inspired informal education policyen_US
dc.title.alternativeAddressing design challenges in mechanical counter pressure spacesuit design and space-inspired informal education policyen_US
dc.typeThesisen_US
dc.description.degreeS.M.in Technology and Policyen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Engineering Systems Division.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Technology and Policy Program.en_US
dc.identifier.oclc722473416en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record