dc.contributor.advisor | Olivier deWeck, Manuel Martinez-Sanchez and Ray Sedwick. | en_US |
dc.contributor.author | Whiting, James K. (James Kalani), 1980- | en_US |
dc.contributor.other | Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics. | en_US |
dc.date.accessioned | 2011-05-23T18:06:00Z | |
dc.date.available | 2011-05-23T18:06:00Z | |
dc.date.copyright | 2011 | en_US |
dc.date.issued | 2011 | en_US |
dc.identifier.uri | http://hdl.handle.net/1721.1/63035 | |
dc.description | Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011. | en_US |
dc.description | Cataloged from PDF version of thesis. | en_US |
dc.description | Includes bibliographical references (p. 131). | en_US |
dc.description.abstract | Differential geometry provides mechanisms for finding shortest paths in metric spaces. This work describes a procedure for creating a metric space from a path optimization problem description so that the formalism of differential geometry can be applied to find the optimal paths. Most path optimization problems will generate a sub-Riemannian manifold. This work describes an algorithm which approximates a sub-Riemannian manifold as a Riemannian manifold using a penalty metric so that Riemannian geodesic solvers can be used to find the solutions to the path optimization problem. This new method for solving path optimization problems shows promise to be faster than other methods, in part because it can easily run on parallel processing units. It also provides some geometrical insights into path optimization problems which could provide a new way to categorize path optimization problems. Some simple path optimization problems are described to provide an understandable example of how the method works and an application to astrodynamics is also given. | en_US |
dc.description.statementofresponsibility | by James K. Whiting. | en_US |
dc.format.extent | 131 p. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Massachusetts Institute of Technology | en_US |
dc.rights | M.I.T. theses are protected by
copyright. They may be viewed from this source for any purpose, but
reproduction or distribution in any format is prohibited without written
permission. See provided URL for inquiries about permission. | en_US |
dc.rights.uri | http://dspace.mit.edu/handle/1721.1/7582 | en_US |
dc.subject | Aeronautics and Astronautics. | en_US |
dc.title | Path optimization using sub-Riemannian manifolds with applications to astrodynamics | en_US |
dc.type | Thesis | en_US |
dc.description.degree | Ph.D. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Aeronautics and Astronautics | |
dc.identifier.oclc | 722474695 | en_US |