MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Graduate Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Task allocation policies for State Dependent queues

Author(s)
Siew, Christine Chiu Hsia
Thumbnail
DownloadFull printable version (10.87Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Aeronautics and Astronautics.
Advisor
Emilio Frazzoli.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Consider a model of a dynamical queue with deterministic arrival and service rates, where the service rate depends on the server utilization history. This proposed queueing model occurs in many practical situations. for example in human-in-the-loop systems where widely accepted empirical laws describe human performance as a function of mental arousal, which increases when the human is working on a task and decreases otherwise. Formal methods for task management in state-dependent dynamical queues are gathering increasing attention to improve the efficiency of such systems. The focus of this research is hence to design maximally stabilizing task release control policies to maximize the useful throughput of such a system. Assuming that the error probability of a server is also related to its state., the useful throughput can be defined as the number of successfully completed tasks per unit time. Monitoring of both service and error rates is particularly typical in the realm of human-in-the-loop and production systems. This research focuses on developing policies to minimize both these penalty measures. For a server with deterministic service rate, the optimal policy is found to be a threshold policy that releases a task to the server only when the server state is less than or equal to a certain threshold. Assuming homogeneous tasks that bring in the same deterministic amount of work to be done, it can be shown that an appropriate threshold policy is maximally stabilizing and that this threshold value can be uniquely determined. This work is then further extended to the case when the server behaves stochastically and verified using simulation. Finally, a proof-of-concept experiment is proposed and developed to test the feasibility of the proposed theoretical policies in real-world settings. The experiment consisted of completing multiple-choice verbal analogy questions and the results confirm the effect of workload control in improving human performance.
Description
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 108-111).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/63041
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Massachusetts Institute of Technology
Keywords
Aeronautics and Astronautics.

Collections
  • Graduate Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.