MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
  • DSpace@MIT Home
  • MIT Libraries
  • MIT Theses
  • Doctoral Theses
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An interactive performance-based expert system for daylighting in architectural design

Author(s)
Gagne, Jaime M. L. (Jaime Michelle Lee)
Thumbnail
DownloadFull printable version (27.80Mb)
Other Contributors
Massachusetts Institute of Technology. Dept. of Architecture.
Advisor
Leslie K. Norford and Marilyne Andersen.
Terms of use
M.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission. http://dspace.mit.edu/handle/1721.1/7582
Metadata
Show full item record
Abstract
Design practitioners are increasingly using digital tools during the design process; however, building performance simulation continues to be more commonly utilized for analysis rather than as a design aid. Additionally, while simulation tools provide the user with valuable information, they do not necessarily guide the designer towards changes which may improve performance. For designing with daylighting, it is essential that the designer consider performance during the early design stage, as this is the stage when the most critical design decisions are made, such as the overall building geometry and faqade elements. This thesis proposes an interactive, goal-based expert system for daylighting design, intended for use during the early design phase. The system gives the user the ability to input an initial model and a set of daylighting performance goals. Performance areas considered are illuminance and glare risk from daylighting. The system acts as a "virtual daylighting consultant," guiding the user towards improved performance while maintaining the integrity of the original design and of the design process itself. This thesis consists of three major parts: development of the expert system, implementation of the system including a user interface, and performance assessment. The two major components of the expert system are a daylighting-specific database, which contains information about the effects of a variety of design conditions on resultant daylighting performance, and a fuzzy rule-based decision-making logic, which is used to determine those design changes most likely to improve performance for a given design. The expert system has been implemented within Google SketchUp along with a user interface which allows a designer to fully participate in the design process. Performance assessment is done in two ways: first by comparing the effectiveness of the system to a genetic algorithm, a known optimization method, and second by evaluating the success of the user interactivity of the tool, its use within the design process, and its potential to improve the daylighting performance of early stage designs.
Description
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Architecture, 2011.
 
Cataloged from PDF version of thesis.
 
Includes bibliographical references (p. 223-233).
 
Date issued
2011
URI
http://hdl.handle.net/1721.1/63057
Department
Massachusetts Institute of Technology. Department of Architecture
Publisher
Massachusetts Institute of Technology
Keywords
Architecture.

Collections
  • Doctoral Theses

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.