MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • Artificial Intelligence Lab Publications
  • AI Memos (1959 - 2004)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

PRISM: A Practical Real-Time Imaging Stereo Matcher

Author(s)
Nishihara, H.K.
Thumbnail
DownloadAIM-780.ps (2.764Mb)
Additional downloads
AIM-780.pdf (2.160Mb)
Metadata
Show full item record
Abstract
A binocular-stereo-matching algorithm for making rapid visual range measurements in noisy images is described. This technique is developed for application to problems in robotics where noise tolerance, reliability, and speed are predominant issues. A high speed pipelined convolver for preprocessing images and an unstructured light technique for improving signal quality are introduced to help enhance performance to meet the demands of this task domain. These optimizations, however, are not sufficient. A closer examination of the problems encountered suggests that broader interpretations of both the objective of binocular stereo and of the zero-crossing theory of Marr and Poggio and required. In this paper, we restrict ourselves to the problem of making a single primitive surface measurement. For example, to determine whether or not a specified volume of space is occupied, to measure the range to a surface at an indicated image location, or to determine the elevation gradient at that position. In this framework we make a subtle but important shift from the explicit use of zero-crossing contours (in band-pass filtered images) as the elements matched between left and right images, to use of the signs between zero-crossings. With this change, we obtain a simpler algorithm with a reduced sensitivity to noise and a more predictable behavior. The PRISM system incorporates this algorithm with the unstructured light technique and a high speed digital convolver. It has been used successfully by others as a sensor in a path planning system and a bin picking system.
Date issued
1984-05-01
URI
http://hdl.handle.net/1721.1/6406
Other identifiers
AIM-780
Series/Report no.
AIM-780

Collections
  • AI Memos (1959 - 2004)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.